Principles of GNSS, inertial, and multisensor integrated navigation systems / Paul D. Groves.
By: Groves, Paul D. (Paul David) [author.].
Material type: BookSeries: GNSS technology and applications series: Publisher: Boston : Artech House, [2013]Copyright date: �2013Edition: Second edition.Description: 1 online resource (800 pages) : illustrations.Content type: text Media type: computer Carrier type: online resourceISBN: 9781608070060 (e-book).Subject(s): Global Positioning System | Artificial satellites in navigation | Inertial navigation systems | Navigation -- Technological innovationsGenre/Form: Electronic books.Additional physical formats: Print version:: Principles of GNSS, inertial, and multisensor integrated navigation systems.DDC classification: 629.045 Online resources: Click to ViewIncludes bibliographical references and index.
Machine generated contents note: ch. 1 Introduction -- 1.1.Fundamental Concepts -- 1.2.Dead Reckoning -- 1.3.Position Fixing -- 1.3.1.Position-Fixing Methods -- 1.3.2.Signal-Based Positioning -- 1.3.3.Environmental Feature Matching -- 1.4.The Navigation System -- 1.4.1.Requirements -- 1.4.2.Context -- 1.4.3.Integration -- 1.4.4.Aiding -- 1.4.5.Assistance and Cooperation -- 1.4.6.Fault Detection -- 1.5.Overview of the Book -- References -- ch. 2 Coordinate Frames, Kinematics, and the Earth -- 2.1.Coordinate Frames -- 2.1.1.Earth-Centered Inertial Frame -- 2.1.2.Earth-Centered Earth-Fixed Frame -- 2.1.3.Local Navigation Frame -- 2.1.4.Local Tangent-Plane Frame -- 2.1.5.Body Frame -- 2.1.6.Other Frames -- 2.2.Attitude, Rotation, and Resolving Axes Transformations -- 2.2.1.Euler Attitude -- 2.2.2.Coordinate Transformation Matrix -- 2.2.3.Quaternion Attitude -- 2.2.4.Rotation Vector -- 2.3.Kinematics -- 2.3.1.Angular Rate -- 2.3.2.Cartesian Position -- 2.3.3.Velocity -- 2.3.4.Acceleration -- 2.3.5.Motion with Respect to a Rotating Reference Frame -- 2.4.Earth Surface and Gravity Models -- 2.4.1.The Ellipsoid Model of the Earth's Surface -- 2.4.2.Curvilinear Position -- 2.4.3.Position Conversion -- 2.4.4.The Geoid, Orthometric Height, and Earth Tides -- 2.4.5.Projected Coordinates -- 2.4.6.Earth Rotation -- 2.4.7.Specific Force, Gravitation, and Gravity -- 2.5.Frame Transformations -- 2.5.1.Inertial and Earth Frames -- 2.5.2.Earth and Local Navigation Frames -- 2.5.3.Inertial and Local Navigation Frames -- 2.5.4.Earth and Local Tangent-Plane Frames -- 2.5.5.Transposition of Navigation Solutions -- References -- ch. 3 Kalman Filter-Based Estimation -- 3.1.Introduction -- 3.1.1.Elements of the Kalman Filter -- 3.1.2.Steps of the Kalman Filter -- 3.1.3.Kalman Filter Applications -- 3.2.Algorithms and Models -- 3.2.1.Definitions -- 3.2.2.Kalman Filter Algorithm -- 3.2.3.System Model -- 3.2.4.Measurement Model -- 3.2.5.Kalman Filter Behavior and State Observability -- 3.2.6.Closed-Loop Kalman Filter -- 3.2.7.Sequential Measurement Update -- 3.3.Implementation Issues -- 3.3.1.Tuning and Stability -- 3.3.2.Algorithm Design -- 3.3.3.Numerical Issues -- 3.3.4.Time Synchronization -- 3.3.5.Kalman Filter Design Process -- 3.4.Extensions to the Kalman Filter -- 3.4.1.Extended and Linearized Kalman Filter -- 3.4.2.Unscented Kalman Filter -- 3.4.3.Time-Correlated Noise -- 3.4.4.Adaptive Kalman Filter -- 3.4.5.Multiple-Hypothesis Filtering -- 3.4.6.Kalman Smoothing -- 3.5.The Particle Filter -- References -- ch. 4 Inertial Sensors -- 4.1.Accelerometers -- 4.1.1.Pendulous Accelerometers -- 4.1.2.Vibrating-Beam Accelerometers -- 4.2.Gyroscopes -- 4.2.1.Optical Gyroscopes -- 4.2.2.Vibratory Gyroscopes -- 4.3.Inertial Measurement Units -- 4.4.Error Characteristics -- 4.4.1.Biases -- 4.4.2.Scale Factor and Cross-Coupling Errors -- 4.4.3.Random Noise -- 4.4.4.Further Error Sources -- 4.4.5.Vibration-Induced Errors -- 4.4.6.Error Models -- References -- ch. 5 Inertial Navigation -- 5.1.Introduction to Inertial Navigation -- 5.2.Inertial-Frame Navigation Equations -- 5.2.1.Attitude Update -- 5.2.2.Specific-Force Frame Transformation -- 5.2.3.Velocity Update -- 5.2.4.Position Update -- 5.3.Earth-Frame Navigation Equations -- 5.3.1.Attitude Update -- 5.3.2.Specific-Force Frame Transformation -- 5.3.3.Velocity Update -- 5.3.4.Position Update -- 5.4.Local-Navigation-Frame Navigation Equations -- 5.4.1.Attitude Update -- 5.4.2.Specific-Force Frame Transformation -- 5.4.3.Velocity Update -- 5.4.4.Position Update -- 5.4.5.Wander-Azimuth Implementation -- 5.5.Navigation Equations Optimization -- 5.5.1.Precision Attitude Update -- 5.5.2.Precision Specific-Force Frame Transformation -- 5.5.3.Precision Velocity and Position Updates -- 5.5.4.Effects of Sensor Sampling Interval and Vibration -- 5.5.5.Design Tradeoffs -- 5.6.Initialization and Alignment -- 5.6.1.Position and Velocity Initialization -- 5.6.2.Attitude Initialization -- 5.6.3.Fine Alignment -- 5.7.INS Error Propagation -- 5.7.1.Short-Term Straight-Line Error Propagation -- 5.7.2.Medium- and Long-Term Error Propagation -- 5.7.3.Maneuver-Dependent Errors -- 5.8.Indexed IMU -- 5.9.Partial IMU -- References -- ch. 6 Dead Reckoning, Attitude, and Height Measurement -- 6.1.Attitude Measurement -- 6.1.1.Magnetic Heading -- 6.1.2.Marine Gyrocompass -- 6.1.3.Strapdown Yaw-Axis Gyro -- 6.1.4.Heading from Trajectory -- 6.1.5.Integrated Heading Determination -- 6.1.6.Accelerometer Leveling and Tilt Sensors -- 6.1.7.Horizon Sensing -- 6.1.8.Attitude and Heading Reference System -- 6.2.Height and Depth Measurement -- 6.2.1.Barometric Altimeter -- 6.2.2.Depth Pressure Sensor -- 6.2.3.Radar Altimeter -- 6.3.Odometry -- 6.3.1.Linear Odometry -- 6.3.2.Differential Odometry -- 6.3.3.Integrated Odometry and Partial IMU -- 6.4.Pedestrian Dead Reckoning Using Step Detection -- 6.5.Doppler Radar and Sonar -- 6.6.Other Dead-Reckoning Techniques -- 6.6.1.Correlation-Based Velocity Measurement -- 6.6.2.Air Data -- 6.6.3.Ship's Speed Log -- References -- ch. 7 Principles of Radio Positioning -- 7.1.Radio Positioning Configurations and Methods -- 7.1.1.Self-Positioning and Remote Positioning -- 7.1.2.Relative Positioning -- 7.1.3.Proximity -- 7.1.4.Ranging -- 7.1.5.Angular Positioning -- 7.1.6.Pattern Matching -- 7.1.7.Doppler Positioning -- 7.2.Positioning Signals -- 7.2.1.Modulation Types -- 7.2.2.Radio Spectrum -- 7.3.User Equipment -- 7.3.1.Architecture -- 7.3.2.Signal Timing Measurement -- 7.3.3.Position Determination from Ranging -- 7.4.Propagation, Error Sources, and Positioning Accuracy -- 7.4.1.Ionosphere, Troposphere, and Surface Propagation Effects -- 7.4.2.Attenuation, Reflection, Multipath, and Diffraction -- 7.4.3.Resolution, Noise, and Tracking Errors -- 7.4.4.Transmitter Location and Timing Errors -- 7.4.5.Effect of Signal Geometry -- References -- ch. 8 GNSS: Fundamentals, Signals, and Satellites -- 8.1.Fundamentals of Satellite Navigation -- 8.1.1.GNSS Architecture -- 8.1.2.Signals and Range Measurement -- 8.1.3.Positioning -- 8.1.4.Error Sources and Performance Limitations -- 8.2.The Systems -- 8.2.1.Global Positioning System -- 8.2.2.GLONASS -- 8.2.3.Galileo -- 8.2.4.Beidou -- 8.2.5.Regional Systems -- 8.2.6.Augmentation Systems -- 8.2.7.System Compatibility -- 8.3.GNSS Signals -- 8.3.1.Signal Types -- 8.3.2.Global Positioning System -- 8.3.3.GLONASS -- 8.3.4.Galileo -- 8.3.5.Beidou -- 8.3.6.Regional Systems -- 8.3.7.Augmentation Systems -- 8.4.Navigation Data Messages -- 8.4.1.GPS -- 8.4.2.GLONASS -- 8.4.3.Galileo -- 8.4.4.SBAS -- 8.4.5.Time Base Synchronization -- 8.5.Satellite Orbits and Geometry -- 8.5.1.Satellite Orbits -- 8.5.2.Satellite Position and Velocity -- 8.5.3.Range, Range Rate, and Line of Sight -- 8.5.4.Elevation and Azimuth -- References -- ch. 9 GNSS: User Equipment Processing and Errors -- 9.1.Receiver Hardware and Antenna -- 9.1.1.Antennas -- 9.1.2.Reference Oscillator -- 9.1.3.Receiver Front End -- 9.1.4.Baseband Signal Processor -- 9.2.Ranging Processor -- 9.2.1.Acquisition -- 9.2.2.Code Tracking -- 9.2.3.Carrier Tracking -- 9.2.4.Tracking Lock Detection -- 9.2.5.Navigation-Message Demodulation -- 9.2.6.Carrier-Power-to-Noise-Density Measurement -- 9.2.7.Pseudo-Range, Pseudo-Range-Rate, and Carrier-Phase Measurements -- 9.3.Range Error Sources -- 9.3.1.Ephemeris Prediction and Satellite Clock Errors -- 9.3.2.Ionosphere and Troposphere Propagation Errors -- 9.3.3.Tracking Errors -- 9.3.4.Multipath, Nonline-of-Sight, and Diffraction -- 9.4.Navigation Processor -- 9.4.1.Single-Epoch Navigation Solution -- 9.4.2.Filtered Navigation Solution -- 9.4.3.Signal Geometry and Navigation Solution Accuracy -- 9.4.4.Position Error Budget -- References -- ch.
10 GNSS: Advanced Techniques -- 10.1.Differential GNSS -- 10.1.1.Spatial and Temporal Correlation of GNSS Errors -- 10.1.2.Local and Regional Area DGNSS -- 10.1.3.Wide Area DGNSS and Precise Point Positioning -- 10.1.4.Relative GNSS -- 10.2.Real-Time Kinematic Carrier-Phase Positioning and Attitude Determination -- 10.2.1.Principles of Accumulated Delta Range Positioning -- 10.2.2.Single-Epoch Navigation Solution Using Double-Differenced ADR -- 10.2.3.Geometry-Based Integer Ambiguity Resolution -- 10.2.4.Multifrequency Integer Ambiguity Resolution -- 10.2.5.GNSS Attitude Determination -- 10.3.Interference Rejection and Weak Signal Processing -- 10.3.1.Sources of Interference, Jamming, and Attenuation -- 10.3.2.Antenna Systems -- 10.3.3.Receiver Front-End Filtering -- 10.3.4.Extended Range Tracking -- 10.3.5.Receiver Sensitivity -- 10.3.6.Combined Acquisition and Tracking -- 10.3.7.Vector Tracking -- 10.4.Mitigation of Multipath Interference and Nonline-of-Sight Reception -- 10.4.1.Antenna-Based Techniques -- 10.4.2.Receiver-Based Techniques -- 10.4.3.Navigation-Processor-Based Techniques -- 10.5.Aiding, Assistance, and Orbit Prediction -- 10.5.1.Acquisition and Velocity Aiding -- 10.5.2.Assisted GNSS -- 10.5.3.Orbit Prediction -- 10.6.Shadow Matching -- References -- ch. 11 Long- and Medium-Range Radio Navigation -- 11.1.Aircraft Navigation Systems -- 11.1.1.Distance Measuring Equipment -- 11.1.2.Range-Bearing Systems -- 11.1.3.Nondirectional Beacons -- 11.1.4.JTIDS/MIDS Relative Navigation -- 11.1.5.Future Air Navigation Systems -- 11.2.Enhanced Loran -- 11.2.1.Signals -- 11.2.2.User Equipment and Positioning -- 11.2.3.Error Sources -- 11.2.4.Differential Loran -- 11.3.Phone Positioning -- 11.3.1.Proximity and Pattern Matching -- 11.3.2.Ranging -- 11.4.Other Systems -- 11.4.1.Iridium Positioning -- 11.4.2.Marine Radio Beacons -- 11.4.3.AM Radio Broadcasts -- 11.4.4.FM Radio Broadcasts -- 11.4.5.Digital Television and Radio -- 11.4.6.Generic Radio Positioning -- References -- ch. 12 Short-Range Positioning -- 12.1.Pseudolites -- 12.1.1.In-Band Pseudolites -- 12.1.2.Locata and Terralite XPS -- 12.1.3.Indoor Messaging System -- 12.2.Ultrawideband -- 12.2.1.Modulation Schemes -- 12.2.2.Signal Timing -- 12.2.3.Positioning --
Note continued: 12.3.Short-Range Communications Systems -- 12.3.1.Wireless Local Area Networks (Wi-Fi) -- 12.3.2.Wireless Personal Area Networks -- 12.3.3.Radio Frequency Identification -- 12.3.4.Bluetooth Low Energy -- 12.3.5.Dedicated Short-Range Communication -- 12.4.Underwater Acoustic Positioning -- 12.5.Other Positioning Technologies -- 12.5.1.Radio -- 12.5.2.Ultrasound -- 12.5.3.Infrared -- 12.5.4.Optical -- 12.5.5.Magnetic -- References -- ch. 13 Environmental Feature Matching -- 13.1.Map Matching -- 13.1.1.Digital Road Maps -- 13.1.2.Road Link Identification -- 13.1.3.Road Positioning -- 13.1.4.Rail Map Matching -- 13.1.5.Pedestrian Map Matching -- 13.2.Terrain-Referenced Navigation -- 13.2.1.Sequential Processing -- 13.2.2.Batch Processing -- 13.2.3.Performance -- 13.2.4.Laser TRN -- 13.2.5.Sonar TRN -- 13.2.6.Barometric TRN -- 13.2.7.Terrain Database Height Aiding -- 13.3.Image-Based Navigation -- 13.3.1.Imaging Sensors -- 13.3.2.Image Feature Comparison -- 13.3.3.Position Fixing Using Individual Features -- 13.3.4.Position Fixing by Whole-Image Matching -- 13.3.5.Visual Odometry -- 13.3.6.Feature Tracking -- 13.3.7.Stellar Navigation -- 13.4.Other Feature-Matching Techniques -- 13.4.1.Gravity Gradiometry -- 13.4.2.Magnetic Field Variation -- 13.4.3.Celestial X-Ray Sources -- References -- ch. 14 INS/GNSS Integration -- 14.1.Integration Architectures -- 14.1.1.Correction of the Inertial Navigation Solution -- 14.1.2.Loosely Coupled Integration -- 14.1.3.Tightly Coupled Integration -- 14.1.4.GNSS Aiding -- 14.1.5.Deeply Coupled Integration -- 14.2.System Model and State Selection -- 14.2.1.State Selection and Observability -- 14.2.2.INS State Propagation in an Inertial Frame -- 14.2.3.INS State Propagation in an Earth Frame -- 14.2.4.INS State Propagation Resolved in a Local Navigation Frame -- 14.2.5.Additional IMU Error States -- 14.2.6.INS System Noise -- 14.2.7.GNSS State Propagation and System Noise -- 14.2.8.State Initialization -- 14.3.Measurement Models -- 14.3.1.Loosely Coupled Integration -- 14.3.2.Tightly Coupled Integration -- 14.3.3.Deeply Coupled Integration -- 14.3.4.Estimation of Attitude and Instrument Errors -- 14.4.Advanced INS/GNSS Integration -- 14.4.1.Differential GNSS -- 14.4.2.Carrier-Phase Positioning -- 14.4.3.GNSS Attitude -- 14.4.4.Large Heading Errors -- 14.4.5.Advanced IMU Error Modeling -- 14.4.6.Smoothing -- References -- ch. 15 INS Alignment, Zero Updates, and Motion Constraints -- 15.1.Transfer Alignment -- 15.1.1.Conventional Measurement Matching -- 15.1.2.Rapid Transfer Alignment -- 15.1.3.Reference Navigation System -- 15.2.Quasi-Stationary Alignment -- 15.2.1.Coarse Alignment -- 15.2.2.Fine Alignment -- 15.3.Zero Updates -- 15.3.1.Stationary-Condition Detection -- 15.3.2.Zero Velocity Update -- 15.3.3.Zero Angular Rate Update -- 15.4.Motion Constraints -- 15.4.1.Land Vehicle Constraints -- 15.4.2.Pedestrian Constraints -- 15.4.3.Ship and Boat Constraint -- References -- ch. 16 Multisensor Integrated Navigation -- 16.1.Integration Architectures -- 16.1.1.Cascaded Single-Epoch Integration -- 16.1.2.Centralized Single-Epoch Integration -- 16.1.3.Cascaded Filtered Integration -- 16.1.4.Centralized Filtered Integration -- 16.1.5.Federated Filtered Integration -- 16.1.6.Hybrid Integration Architectures -- 16.1.7.Total-State Kalman Filter Employing Prediction -- 16.1.8.Error-State Kalman Filter -- 16.1.9.Primary and Reversionary Moding -- 16.1.10.Context-Adaptive Moding -- 16.2.Dead Reckoning, Attitude, and Height Measurement -- 16.2.1.Attitude -- 16.2.2.Height and Depth -- 16.2.3.Odometry -- 16.2.4.Pedestrian Dead Reckoning Using Step Detection -- 16.2.5.Doppler Radar and Sonar -- 16.2.6.Visual Odometry and Terrain-Referenced Dead Reckoning -- 16.3.Position-Fixing Measurements -- 16.3.1.Position Measurement Integration -- 16.3.2.Ranging Measurement Integration -- 16.3.3.Angular Measurement Integration -- 16.3.4.Line Fix Integration -- 16.3.5.Handling Ambiguous Measurements -- 16.3.6.Feature Tracking and Mapping -- 16.3.7.Aiding of Position-Fixing Systems -- References -- ch. 17 Fault Detection, Integrity Monitoring, and Testing -- 17.1.Failure Modes -- 17.1.1.Inertial Navigation -- 17.1.2.Dead Reckoning, Attitude, and Height Measurement -- 17.1.3.GNSS -- 17.1.4.Terrestrial Radio Navigation -- 17.1.5.Environmental Feature Matching and Tracking -- 17.1.6.Integration Algorithm -- 17.1.7.Context -- 17.2.Range Checks -- 17.2.1.Sensor Outputs -- 17.2.2.Navigation Solution -- 17.2.3.Kalman Filter Estimates -- 17.3.Kalman Filter Measurement Innovations -- 17.3.1.Innovation Filtering -- 17.3.2.Innovation Sequence Monitoring -- 17.3.3.Remedying Biased State Estimates -- 17.4.Direct Consistency Checks -- 17.4.1.Measurement Consistency Checks and RAIM -- 17.4.2.Parallel Solutions -- 17.5.Infrastructure-Based Integrity Monitoring -- 17.6.Solution Protection and Performance Requirements -- 17.7.Testing -- 17.7.1.Field Trials -- 17.7.2.Recorded Data Testing -- 17.7.3.Laboratory Testing -- 17.7.4.Software Simulation -- References -- ch. 18 Applications and Future Trends -- 18.1.Design and Development -- 18.2.Aviation -- 18.3.Guided Weapons and Small UAVs -- 18.4.Land Vehicle Applications -- 18.5.Rail Navigation -- 18.6.Marine Navigation -- 18.7.Underwater Navigation -- 18.8.Spacecraft Navigation -- 18.9.Pedestrian Navigation -- 18.10.Other Applications -- 18.11.Future Trends -- References.
Description based on print version record.
Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
There are no comments for this item.