Hill, JR. F.S.

Computer graphics : using OpenGL / F.S. Hill, JR. - 3rd edition. - New Delhi : Phi learning Private limited, 2013. - xxii, 778 p. ill.

F.S. Hill Jr. is a Professor Emeritus of the Electrical and Computer Engineering Department at the University of Massachusetts at Amherst. He received a Ph. D. degree from Yale University in 1968, worked for 3 years in digital data transmission at Bell Telephone Laboratories, and joined the University in 1970. He is the author of numerous articles in the field of signal processing, communications, and computer graphics. He has been editor and associate editor of the IEEE Communications Society magazine. He is also a fellow of the IEEE. He is co-author of the book Introduction To Engineering and has won several awards for outstanding teaching. Stephen M. Kelley and Dr. Hill met in 2000 in connection with a National Science Foundation distance learning project. Since then co-teaching courses in computer graphics at the University of Massachusetts and co-authoring Computer Graphics using OpenGL, 3rd Edition. Stephen Kelley recently graduated from the University of Massachusetts with a degree in Interactive Multimedia and Computer Graphics along with a minor in Information Technology. Stephen also runs his own web development and consulting company, Intangible Inc.

F.S. Hill Jr. is a Professor Emeritus of the Electrical and Computer Engineering Department at the University of Massachusetts at Amherst. He received a Ph. D. degree from Yale University in 1968, worked for 3 years in digital data transmission at Bell Telephone Laboratories, and joined the University in 1970. He is the author of numerous articles in the field of signal processing, communications, and computer graphics. He has been editor and associate editor of the IEEE Communications Society magazine. He is also a fellow of the IEEE. He is co-author of the book Introduction To Engineering and has won several awards for outstanding teaching. Stephen M. Kelley and Dr. Hill met in 2000 in connection with a National Science Foundation distance learning project. Since then co-teaching courses in computer graphics at the University of Massachusetts and co-authoring Computer Graphics using OpenGL, 3rd Edition. Stephen Kelley recently graduated from the University of Massachusetts with a degree in Interactive Multimedia and Computer Graphics along with a minor in Information Technology. Stephen also runs his own web development and consulting company, Intangible Inc.

Includes index.

1 Introduction to Computer Graphics

1.1 What is Computer Graphics?

1.2 Where Computer Generated pictures are Used

1.3 Elements of Pictures created in Computer Graphics.

1.4 Graphics display devices

1.5 Graphics Input Primitives and Devices

1.6. Chapter Summary & Exercises

1.7. For Further Reading.

Chapter 2 Getting Started Drawing Figures

2.1 Getting started making pictures

2.2 Drawing Basic Graphics Primitives

2.3 Making Line-drawings

2.4 Simple interaction with mouse and keyboard

2.5. Summary

2.6. Case Studies

2.7. For Further Reading.

Chapter 3 Additional Drawing Tools

3.1. Introduction

3.2. World Windows and Viewports

3.3. Clipping Lines

3.4. Regular Polygons, Circles, and Arcs

3.5. The Parametric Form of a Curve.

3.6. Summary.

3.7. Case Studies

3.8. For Further Reading.

Chapter 4 Vector Tools for Graphics

4.1. Introduction

4.2. Review of Vectors

4.3. The Dot Product.

4.4. The Cross Product of Two Vectors.

4.5. Representations of Key Geometric Objects.

4.6. Finding the Intersection of two Line Segments.

4.7. Intersections of Lines with Planes, and Clipping.

4.8. Polygon Intersection Problems.

4.9. Summary.

4.10. Case Studies

4.11. For Further Reading.

Chapter 5 Transformations of Objects

5.1. Introduction

5.2. Introduction to Transformations

5.3. 3D Affine Transformations

5.4. How To Change Coordinate Systems

5.5. Affine Transformations used in a Program.

5.6. To Draw 3D Scenes Interactively with OpenGL.

5.7. Summary.

5.8. Case Studies.

5.9. For Further Reading.

Chapter 6 Modeling Shapes with Polygonal Meshes.

6.1. Introduction

6.2. Introduction to Solid Modeling with Polygonal Meshes.

6.3. Polyhedra.

6.4. Extruded Shapes.

6.5. Mesh Approximations to Smooth Objects.

6.6. Particle Systems and Physically Based Systems

6.7. Summary.

6.8. Case Studies.

6.9. For Further Reading.

Chapter 7 Three-Dimensional Viewing

7.1 Introduction

7.2. The Camera Revisited.

7.3. To Specify a Camera in a program.

7.4. Perspective Projections of 3D Objects.

7.5. To Produce Stereo Views.

7.6. Taxonomy of Projections.

7.7. Summary

7.8. Case Studies

7.9. For Further Reading.

Chapter 8 Rendering Faces for Visual Realism

8.1. Introduction

8.2. Introduction to Shading Models

8.3. Flat Shading and Smooth Shading.

8.4. Adding Hidden Surface Removal.

8.5. To Add Texture to Faces.

8.6. To Add Shadows of Objects.

8.7. OpenGL 2.0 & The Shading Language (GLSL)

8.8. Summary.

8.9. Case Studies

8.10. For Further Reading.

Chapter 9 Tools for Raster Displays

9.1. Introduction

9.2. Manipulating Pixmaps.

9.3. Combining Pixmaps.

9.4. Do It Yourself Line Drawing: Bresenhamâ s Algorithm.

9.5 To Define and Fill Regions of Pixels.

9.6. Manipulating Symbolically-defined Regions.

9.7. Filling Polygon-Defined Regions.

9.8. Aliasing and Anti-Aliasing Techniques.

9.9. Creating More Shades and Colors.

9.10. Summary.

9.11. Case Studies.

9.12. Further Reading

Chapter 10 Curve and Surface Design

10.1. Introduction

10.2. Describing Curves using Polynomials.

10.3. On Interactive Curve Design.

10.4. Bezier Curves for Curve Design.

10.5. Properties of Bezier Curves.

10.6. Finding Better Blending functions.

10.7. The B-Spline Basis Functions.

10.8. Useful Properties of B-Spline Curves for Design.

10.9. Rational Splines and NURBS Curves.

10.10. A Glimpse at Interpolation.

10.11. Modeling Curved Surfaces.

10.12. Summary

10.13. Case Studies.

10.14. Further Reading.

Chapter 11 Color Theory

11.1. Introduction

11.2. Color Description

11.3. The CIE Standard

11.4. Color Spaces

11.5. Indexed Color and the LUT.

11.6. Color Quantization.

11.7. Summary

11.8. Case Studies

11.9. For Further Reading.

Chapter 12 Ray Tracing

12.1. Introduction

12.2. Setting Up the Geometry of Ray Tracing

12.3. Overview of the Ray-Tracing Process

12.4. Intersection of a Ray with an Object.

12.5. Organizing a Ray Tracer Application.

12.6. Intersecting Rays with Other Primitives

12.7. To Draw Shaded Pictures of Scenes

12.8. Adding Surface Texture.

12.9. Anti-aliasing Ray Tracings.

12.10. Using Extents

12.11. Adding Shadows for Greater Realism.

12.12. Reflections and Transparency

12.13. Compound Objects: Boolean Operations on Objects

12.14. Ray Tracing vs. Ray Casting

12.15. Summary.

12.16. Case Studies.

12.17. For Further Reading

A1. Graphics Tools - Obtaining OpenGL. A2. Some Mathematics for Computer Graphics

A2.1 Some Key Definitions for Matrices and their Operations

A2.2. Some Properties of Vectors and their operations.

A2.3. Spherical Coordinates and Direction Cosines.

A3. An Introduction to SDL: Scene Description Language

A3.1. Syntax of SDL

A3.2. Macros in SDL.

A3.3. Extending SDL.

A4. Fractals and The Mandelbrot Set

A4.1. Introduction

A4.2. Fractals and Self-Similarity

A4.3. The Mandelbrot Set

A5. Relative and Turtle Drawing.

A5.1. To Develop moveRel and lineRel.

A5.2. Turtle Graphics

A5.3. Figures Based on Regular Polygons.

References

Index



This book introduces the basic concepts and techniques of modern interactive computer graphics, assisting in writing practical application programs.

pbk.

9788120338296


Computer graphics
Multimedia systems

006.6 H645C 2007